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Learning Objectives: 

 

From this module students may get to know about the following: 

1. The relativistic motion of a charged particle in a static and uniform 

electric field. 

2. The relativistic motion of a charged particle in a static and uniform 

magnetic field and expressions for frequency and radius of gyration. 

3.  Motion in combined, uniform and static, transverse electric and 

magnetic fields and its use as a velocity selector. 

4. The special case of electric and magnetic fields which are “equal” in 

magnitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

21. Motion in electric and magnetic fields 
 

21.1 Motion in uniform and static electric field 
 

One important field of investigation in electrodynamics is the study of motion of charged 

particles under the influence of various electric and magnetic field configurations.  Such 

studies are of immense importance in the design of particle accelerators, magneto-

hydrodynamics, ionosphere and cosmic rays, to name a few. 

 

We will look at the simplest configurations to begin with, viz., motion in a uniform and static 

electric field.  However, from the very beginning we will consider relativistic dynamics of the 

charged particle. 

 

Let us say we have a particle of charge q and mass m, passing through a region of uniform 

and static electric field E


.  The force acting on such a particle is q E


.  From Newton’s 

second law, the motion of the particle is governed by the equation 
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Now for a relativistic particle of (rest) mass m, the momentum p
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 is given by 
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Here, as usual, p


 is the momentum and v


 is the velocity of the particle, and c of course is 

the velocity of light. 

 

Without any loss of generality we can fix the direction of the electric field to be along one of 

the axes, say the x-axis 
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Let the initial momentum of the particle, 0p


, be in the y direction: 
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Our aim is to determine the trajectory of the particle passing through such a region.  It is clear 

that the trajectory will lie in the plane containing the electric field and the initial momentum, 

i.e., in the x-y plane.  Taking the x and y components of (1) and using (3) and (4), we have 
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These equations can be solved immediately to give 

 

    tqEp xx  ,  

 

    oy pp  . 

 

Here p0 is a constant and we have chosen the origin of time so that 0xp  at 0t .  The 

relativistic expression for the energy of the particle, including the rest energy, is 
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T0 being the initial energy including rest energy. 

 

The relativistic relation between the kinetic energy, momentum and velocity can be written in 

the form: 
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On equating the x and y components, 
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These equations can be solved readily to obtain 
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This is the equation of the trajectory of the particle in a parametric form in terms of time t.  

On eliminating t from the two equations, we obtain 
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In mathematics, this is the equation of a catenary.  This is the shape taken by a uniform chain 

in gravity, whose two ends are fixed at the same height. 

 

 

   

 
 

 

There are certain interesting facts to be noted.   

 

 The force is acting only along the x-direction, so the y component of the momentum is 

conserved.   

 

 In the non-relativistic case it implies that the y component of velocity is also conserved.   

 

 In the relativistic case, the mass of the particle increases and hence the y component of 

velocity decreases and eventually tends to zero.   

 

 The x component of velocity tends to a constant, c, and the force essentially increases the 

mass of the particle.   

 

 In the non-relativistic case the trajectory is well known to be a parabola, and indeed a 

catenary reduces to a parabola for small y. 

 

21.2 Motion in uniform and static magnetic field 

 

The force acting on a particle of mass m and velocity v


 in a magnetic field B


 is given by 
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Since the force is always directed normal to the velocity, no work is done by the magnetic 

field and hence the kinetic energy of the particle, T (=
2mc ), also remains unchanged: 
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Since the kinetic energy is constant in time, so is the magnitude of velocity, and hence so 

is .  This leads to considerable simplification of the analysis.  Using (2) and the fact that   

is constant, we have 
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or  
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where 
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B  is called gyration frequency or precession frequency.. 

 

Taking the magnetic field B


 to be along the z direction, we have 
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The other two equations are 
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Multiplying the second equation with i and adding the two, we have 
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This equation has the solution 
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On integrating, we obtain 
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The main features of the motion are:  [See Figure] 

 

 In the x-y plane the particle moves in a circle of radius a called the radius of gyration. 

 

 Along the direction of the magnetic induction there is no force and the particle moves 

with a uniform velocity.  

 The path is a helix of radius a and pitch angle ).(tan 1

a

v

B

z


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 The magnitude of the gyration radius a depends on the magnitude of magnetic field B


 

and the transverse momentum p


 of the particle: 
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 This provides a way to determine the transverse momentum of a charged particle and is 

of considerable interest in particle physics where all kinds of stratagems are employed to 

investigate the properties of particles produced in various particle reactions. 

 

 The motion and nature of trajectory is the same in the relativistic as well as the non-

relativistic cases.  The path is a helix.  The only difference is the appearance of the factor  in 

various equations, in particular, the gyration frequency 
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21.3 Motion in combined, orthogonal electric and magnetic fields 
 

We now consider a charged particle moving in a combination of electric and magnetic fields.  

The especially interesting and important case is one in which the two fields are transverse to 

each other.  For a particle with velocity v


, we have the Lorentz force equation and the 

energy change equation 
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The second equation follows from the relation between energy and momentum: 
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Since vmp


  and 
2mcT  , it follows that Evq

dt

dT 
. .   However, since the energy of 

the particle is no longer constant, we cannot obtain a simple equation for the velocity, as was 

done for the case of magnetic field alone.  We now take an altogether different approach and 

appeal to Lorentz transformations.  The electric and magnetic field together form a tensor and 

transform under Lorentz transformation as the components of a second rank tensor.  Let the 

given frame of reference be K.  Consider another frame of reference 'K  moving with velocity 

u


 with respect to the frame K.  Then in the frame 'K , the Lorentz force equation, the electric 

field and the magnetic field are transformed to 
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There are three cases to be considered: electric field (divided by c; remember E/c has the 

same dimensions as B) less than, greater than or equal to the magnetic field. 

 

21.3.1 |E| /c< |B| 
 

In this case choose  
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Since BcE / , therefore 1


 and this is a valid Lorentz transformation.  Then in 'K  
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since 


,, BE  are all mutually orthogonal.  Similarly,  
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Thus in the frame 'K , the field is only static, uniform magnetic field (the electric field has 

simply vanished!), in the same direction as in K but reduced by a factor of  .  The trajectory 

in the 'K  frame is thus a spiral around the lines of force.  In the original frame of reference 

K, this gyration around the lines of force is accompanied by a uniform drift u


 normal to both 

the fields.  This is often called the BE   drift.  The direction of the drift is independent of 

the sign of the charge of the particle. 

 

This rather strange looking result where the particle drifts in a direction normal to both 

electric and magnetic field can be understood in a qualitative way.  A particle that starts 

gyrating around B


 is accelerated by E


, gains energy, and moves in a path with larger radius 

for roughly half of its cycle.  Remember, the radius of gyration is proportional to the 

transverse momentum! In the other half, E


 decelerates it, causing it to lose energy and so 

move in a tighter arc.  The combination of the two arcs produces a translation normal to both 

E


 and B


. [See Figure, Figure 12.2 Jackson Edition 2] 

 

 
 

 

 

21.3.2 The velocity selector 

 

Let a particle enter a region of crossed electric and magnetic fields with BcE  .  If the 

particle enters this region with a speed 
2B

BE
u


 
 , normal to both the fields, then in the K’ 

frame moving with velocity u


 with respect to K, the speed of the particle is zero.  Since the 

electric field is also zero in this frame, there is no force acting on the particle in 'K ; its speed 

remains zero in 'K , which implies that its speed will remain u


 in the frame K which further 

implies that the particle will move out undeviated through the crossed E


 and B


 fields.  

Suitable entrance and exit slits will then allow only a very narrow band of velocities around 

E/B to be transmitted.  This is a very useful way of having a velocity selector. 

 



 

 

Combined with momentum selectors like a deflecting magnet, the BE


  velocity selectors 

can extract a very pure and monoenergetic beam with different masses and momenta – 

commonly used in high-energy accelerators. 

 

21.3.3 |E| > c|B| 
 

In this case choose  

 

     
2E

BE
u


 
                   (32) 

 

Now BcE / , therefore 1


 and this is again a valid Lorentz transformation.  An 

analysis similar to the |E| < c|B| case gives in 'K  
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In 'K  the field is pure uniform and static electric field; the motion is a catenary with ever-

increasing velocity.  The motion in K can be obtained by using the relativistic velocity 

transformation law. 

 

21.4 The special case of equal magnitudes: E=cB 

 

In this case it is not possible to make transformation to a frame of reference in which the field 

is purely electric or purely magnetic and the problem has to be solved in full generality.  Let 

the magnetic field B


 be in the z-direction and the electric field E


 be in the y-direction.  Let 

the magnitude of the electric field be denoted by E.   Then yEE ˆ

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or 
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Further, if T is the kinetic energy, from equation (25) and (35) 
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where    is some constant.  Now 
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We have the relativistic relation 
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where 
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is a constant since zp is also a constant.  On using equations (40) and (41) we have 
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On solving equations (39) and (43) for T and px, we get 
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On multiplying equation (36) with T and using equation (39) and the relation 

xxx pcvmcTv 22   , we have 
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On integrating the last form of the above relation, we have 
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To determine the trajectory, we start with 
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On integrating this equation we get 
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Or 
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On integrating 
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Similarly 
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Formulas (48) – (50) determine the motion of the particle in parametric form in which 

py acts as the parameter.  The time dependence is given by equation (47). 

 

Thus the problem can in principle be fully solved.  The solution looks very unlike 

what we get for the other two cases that we discussed above, viz., E/c<B and E/c>B. 

 

 

 

 

Summary 
 

1. The relativistic motion of a charged particle in a uniform and 

constant electric field was studied.  The differences from the non-

relativistic case were discussed. 

 

2. The relativistic motion of a charged particle in a static and uniform 

magnetic field was considered.  Expressions for the radius and the 

frequency of gyration were obtained. 

 

3. Next motion in combined, uniform and static, transverse electric and 

magnetic fields was considered.   

 

4. For the case of |E|<c|B|, a transformation could be made to another 

frame of reference in which the field is purely electric in nature and 

the solution is thus a catenary in that frame.  The motion in the 

original frame is obtained by applying the law of addition of 

velocities. 

 

5.  In the case of |E|<c|B|, a transformation can be made to a frame of 

reference in which the field is purely magnetic and the solution is thus 

similar to that in a pure magnetic field along with a “drift” in the 

transverse direction. The use of such a configuration as a velocity 

selector was described. 

 



 

 

6. Finally the special case of electric and magnetic fields which are 

equal in magnitude, i.e., |E|=c|B| was discussed and the complete 

solution obtained. 


